Mixed-Signal Blockset™
User's Guide

<

MATLAB&SIMULINK?

R2019b > ) MathWorks’



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Mixed-Signal Blockset™ User's Guide
© COPYRIGHT 2019 by MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.
Revision History

March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019  Online only Revised for Version 1.1 (Release 2019b)


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

PLL Featured Examples

1]

Phase Noise at PLLOutput ............................. 1-2

PLL Design and Verification Using Data Sheet Specifications

2|

Effect of Metastability Impairment in Flash ADC . .......... 2-2
Design and Evaluate Interleaved ADC ................... 2-10
Design and Evaluate Successive Approximation ADC Using
Stateflow . . ... .. .. . . . 2-21
Analyzing Simple ADC with Impairments ................ 2-31
Subranging ADC . ........... .. ... .. . ... 2-40
Measuring Offset and Gain Errors in ADC ... ............. 2-52

Compare SARADCtoIdeal ADC ....................... 2-57

iii



iv

Contents

Mixing Analog and Digital Signals Featured Examples

3|

Digital Timing using Solutions to Ordinary Differential

Equations . ......... ... . ... ... . ... .. 3-2
Digital Timing Using Fixed Step Sampling ................ 3-7
Logic Timing Simulation .............................. 3-12

PLL Block Level Examples

4

Measuring VCO Phase Noise to Compare with Target Profile

................................................. 4-2
Finding Voltage Sensitivity and Quiescent Frequency of VCO »
Frequency Division Using Single Modulus Prescaler . .. ... .. 4-6
Frequency Division Using Dual Modulus Prescaler ......... 4-8
Frequency Division Using Fractional Clock Divider with

Accumulator . ......... ... 4-10
Frequency Division Using Fractional Clock Divider with DSM 412



PLL Featured Examples
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Phase Noise at PLL Output

This example shows how to predict the phase noise at the output of a phase-locked loop

(PLL), simulate the PLL using the PLL Testbench, and compare simulation results to

theoretical predictions.

This example demonstrates three phase noise effects, individually or combined,
depending on the configuration you choose:

1 Reference modulation or phase noise
2 VCO phase noise

3 VCO phase noise subsampled by the feedback prescaler

% Open the model PllPhaseNoiseExample.slx.

open_system('Pl1lPhaseNoiseExample.s

x");
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This example uses an Integer N PLL with Single Modulus Prescaler from the Mixed Signal
Blockset. See Integer N PLL with Single Modulus Prescaler for more details.

The PLL Testbench generates the reference input signal for the PLL and measures the
phase spectral density at the output of the PLL.

The optional PRBS6 reference phase modulation in this model is used to contrast the
response to reference phase variation with the response to VCO phase noise.
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The low pass resamplers at the inputs to the spectrum estimators are anti-aliasing filters
used to convert variable step discrete signals to the fixed step discrete signals required
by the spectrum estimators.

The spectra of the PLL input and output signals are estimated and logged in the base
workspace so that you can compare the simulation results to the results of the theoretical
calculations.

The oscilloscope in the example model provides a progress indicator for the simulation.

To evaluate the behavior of the PLL under a variety of conditions, use a separate
workspace file for each different set of conditions. This example provides five such
supporting .mat files. All of them produce the same loop transient response.

1 Baseline.mat - As close to ideal as possible. Use to evaluate numerical noise
inroduced by the model and simulator.

2 ReferenceModulation.mat - Introduce reference phase modulation. Use to
evaluate the phase transfer function of the PLL.

3 VCOPhaseNoise.mat - Introduce VCO phase noise and a prescaler ratio equal to
one. Use to evaluate the PLL control loop's error function.

4 InbandPhaseNoise.mat - Introduce VCO phase noise and a prescaler ratio greater
than one. Use to evaluate the effect of the prescaler ration on the PLL control loop's
error function.

5 TotalPhaseNoise.mat - All phase noise sources enabled, and the prescaler ratio
greater than one.

Theoretical Calculations
This section shows how to calculate the expected response of the PLL.

The target loop bandwidth of the PLL is 2 MHz with a 45 degree phase margin. The loop
filter components are scaled to practical level and the charge pump output current is
scaled by the same factor to maintain the same loop dynamics.

The function getP11LoopResponse calculates the loop gain as a function of frequency
and then calculates the expected response to signals from outside or inside the PLL.
Define the input parameters such as charge pump output current, VCO sensitivity,
prescaler ratio and passive loop filter component values for the getP11LoopResponse
function to use.

P11Kphi
P11Kvco

5e-3; % Charge Pump output current
100e6; % VCO sensitivity
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PLIN = 70; % Prescaler ratio

PLT1IR2 = 1.33e3; % Loop filter resistance for second order response (ohms)
PLIR3 = 1.7e4; % Loop filter resistance for third order response (ohms)
PLIR4 = 0; % Loop filter resistance for fourth order response (ohms)
P11C1 = 1.31e-11; % Loop filter direct capacitance (F)

PL1C2 = 1.44e-10; % Loop filter capacitance for second order response (F)
PL1C3 = 9.41le-13; % Loop filter capacitance for third order response (F)
PL1C4 = 0; % Loop filter capacitance for fourth order response (F)

The scipt prepareExpectedSpectra computes the spectral density of the reference
phase modulation and the VCO output phase noise, then combines the result with the PLL
loop response to obtain the phase noise spectral density at the output of the PLL. The
reference phase modulation is a deterministic process for which the amplitude of the
spectral components is expressed as a fraction of the carrier amplitude (dBc) whereas the
VCO phase noise is a stockastic process for which the spectral density is expressed in
dBc/Hz.

Define the input parameters for the prepareExpectedSpectra script such as reference
input frequency, number of reference cycles per symbol of PRBS6 phase modulation data
pattern, amplitude of a single spectgral componentent of the PRBS6 reference phase
modulation, resolution bandwidth to evaluate spectra with phase noise, frequency offset
vector, and phase noise spectral densities at specified frequency offset.

P11AddPhaseNoise = 'on'; % Enable VCO phase noise
Pl1lFoffset [30e3 100e3 1le6 3e6 10e6]; % VCO offset frequencies (Hz)
P1L1PhaseNoise = [-56 -106 -132 -143 -152]; VCO output phase noise (dBc/Hz)
CfgSelectRefMod = '0'; Enable reference phase noise modulation
CfgRef = 30e6; Reference frequency
CfgCyclesPerSymbol = 2; Reference cycles per PRBS6 modulation symbol
CfgModLevel = -110; Reference phase modulation level (dBc/Hz)
CfgResBandwidth = 100e3; PLL Testbench resolution bandwidth
CfgTargetSpectrum = [100e3 -145;1e6 -135;3e6 -140;10e6 -1501];

% PLL Testbench target phase noise (dBc/Hz)

o°

o o® o° o° of

If the variable WorkspaceFile exists and points to a file that can be loaded, load that file
into the workspace. To use a configuration supplied with this example, set the value of
WorkspaceFile to the name of the file for that configuration.

if exist('WorkspaceFile','var') && exist(WorkspaceFile, 'file')
load (WorkspaceFile);
end

Analyze the PLL control loop using the getP11LoopResponse function. The outputs of
this function are
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* LoopFrequency - The frequency points at which the expected responses have been
calculated

* LoopZofs - The transfer impedance of the loop filter as a function of frequency

* LoopGofs - The loop gain from the output of the prescaler to the input of the VCO,
including the VCO voltage sensitivity. Note that the prescaler ratio is not included in
this output, but is included in the closed loop transfer functions.

* LoopHofs - The closed loop phase transfer function fromt he PLL reference input to
the PLL output

* LoopEofs - The closed loop phase error transfer function with respect to the VCO
output

[LoopFrequency, LoopZofs, LoopGofs, LoopHofs, LoopEofs, LoopPhStep] = ...
getPllLoopResponse([0,P11R2,P11R3,P11R4], [P11C1,P11C2,P11C3,P11C4],
P11Kphi, P11Kvco,Pl1lN);

Organize the computation of expected spectral density to place spectral components
directly into the frequency bins.

The workspace variables for the expected spectral density are
* ExpInputFrequency - A vector of frequencies for which the expected input spectram

has been calculated (Hz)

* ExpInputSpectrum - A vector of expected spectrum values at the reference input to
the PLL (dBm into a one ohm load at a resolution bandwidth of CfgResBandwidth)

* ExpOutputFrequency - A vector of frequencies for which the expected output
spectrum has been calculated (Hz)

* ExpOutputSpectrum - A vector of expected spectrum values at the PLL output (dBm
into a one ohm load at a resolution bandwidth of CfgResBandwidth)

prepareExpectedSpectra;
Examine Expected Results
In this section, examine the expected PLL behavior.

Start by looking at the closed loop response of the PLL. Consider three fundamental
responses: transient response, transfer function, error function.

Transient response: In most PLL applications, the loop transient response is most
impoortant when the loop is initially acquiring phase lock. For very small initial frequency
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Output Phase

offsets or for relatively high closed loop bandwidth, the transient resopnse will predict the
loop acquisition time reasonably accurately. However, in many cases, the loop transient
response only represents the response during phase acquisition, after frequency
acquisition has already occurred. This example only addresses the phase acquisition time.

Plot the loop transient response of the PLL.

figure(l);

plot(LoopPhStep.Time, LoopPhStep.Data);

title({'PLL Loop Transient Response';'to unit input phase step'});
xlabel('Seconds');

ylabel('Output Phase');

PLL Loop Transient Response
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Transfer function: The transfer function from the reference input to the PLL output can
be important either when the PLL is expected to track a modulated input very accurately
or when it is expected to filter out noise from a noisy input.

Create a log-log plot of the PLL transfer function.

figure(2);
semilogx(LoopFrequency,20*10gl0(abs(LoopHofs)));
title('PLL Transfer Function');

xlabel('Hz");

ylabel('dB"');
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Error function: The PLL control loop is expected to reject phase noise generated inside
the PLL itself, such as VCO phase noise. The transfer function between the VCO phase
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noise and the PLL output is sometimes called the loop error function. Examining this
transfer function helps compensate the loop error before it is applied to another noise
source.

Create a log-log plot of the PLL loop error function.

figure(3);
semilogx(LoopFrequency,20*1ogl0(abs(LoopEofs)));
title('PLL Loop Error Function');

xlabel('Hz");

ylabel('dB');

10 PLL Loop Error Function
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Plot the total expected phase noise at the PLL output
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figure(4);

plot (ExpOutputFrequency, ExpOutputSpectrum);

title('PLL OQutput Spectrum');

xlabel('Hz");

ylabel('dBm into 1 ohm');

xUlim([PLIN*CfgRef-2*P11Foffset(end), PLIN*CfgRef+2*PllFoffset(end)]);

- PLL Output Spectrum

50 F i

2.08 2.085 209 2.005 2.1 2,105 2,11 2115 2.12
Hz «10°

The phaseNoiseMeasure function is a callback function used by the PLL Testbench. It
displays the target output phase noise spectral density along with the simulated or
expected phase noise spectral density.

To compare the expected output phase noise to a specific design target, define the
workspace variable CfgTargetSpectrum. CfgTargetSpectrum consists of two column
arrays that specify the target phase noise at the output of the PLL. The first column
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Power (dBm)

specifies the frequency offsets in Hz and the second column spcifies the corresponding
phase noise spectral density if dBc/Hz. The PLL Testbench uses the callback function
phaseNoiseMeasure to display the expected and simulated phase noise spectral density.

View the expected PLL output phase noise in units of dBc/Hz.

[~

= phaseNoiseMeasure (ExpOutputFrequency,ExpOutputSpectrunm, ...
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If the loop response isn't satisfactory, you might look at more detailed results such as the
loop filter transimpedance (LoopZofs) to get additional insights that could help you
improve the PLL design.
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Run the Simultaion

While the configuration process is entirely straightforward, there are a lot of parameters
to be configured. Use the configureExamplePLL function to configure the PLL Simulink
model.

% Configure the system.
configureExamplePl1;

% Execute

SimOut = sim('Pl1PhaseNoiseExample');

Warning: Unable to resolve the name autosar.api.Utils.initMessageStreamHandler.

Scope

Eile Tools “Wiew Simulation Help .

PO @®|=-

Cl-| & & -

& -

@ -

Aeady Sample based T=4.5e-05
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To make plotting easier, transform the results into the following four workspace variables:

* SimInputFrequency - A vector of frequencies for which the imput spectrum of the
simulation is stored. (Hz)

e SimInputSpectrum - A vector of spectrum values at the reference input to the PLL
(dBm into a one ohm load at a resolution bandwidth of CfgResBandwidth)

* SimOutputFrequency - A vector of frequencies for which the output spectrum of the
simulation is calculated (Hz)

* SimQutputSpectrum - A vector of simulated spectrum values at the PLL output (dBm
into a one ohm load at a resolutioon bandwidth of CfgResBandwidth)

Make the results easier to plot from the workspace

SimInputFrequency = reshape(SimQut.InputFrequency.Data(:,end),1
SimInputSpectrum = reshape(SimOut.InputSpectrum.Data(:,end),1, |
SimOutputFrequency = reshape(SimQut.OutputFrequency.Data(:,end)
SimOutputSpectrum = reshape(SimQut.OutputSpectrum.Data(:,end),1

Compare Expected and Simulated Results

Compare expected and simulated phase noise at the PLL output.

figure(4);

plot (ExpOutputFrequency, ExpOutputSpectrum);

title('PLL OQutput Spectrum');

xlabel('Hz');

ylabel('dBm into 1 ohm');

xlim([PLIN*CfgRef-2*P11Foffset(end), PLIN*CfgRef+2*PL1lFoffset(end)]);
hold on;

plot(SimOutputFrequency,SimOutputSpectrum);

hold off;

1-13
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- PLL Output Spectrum
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View the expected PLL output phase noise in units of dBc/Hz.
[~] = phaseNoiseMeasure(SimOutputFrequency,SimOutputSpectrum,...

SimOutputFrequency(2)-SimQutputFrequency(1l),...
CfgTargetSpectrum(:,1).','on','5",CfgTargetSpectrum(:,2).");

1-14



Phase Noise at PLL Output

Fower {dBm)

Power Spectrum Phase Noise

40

Feak at Measured
2.1 GHz . m= = Target

20F

i
Pl
=
T
L
e
=
=
1

-150

Phase noise (dBc/Hz)

-100

-120

-140 : -200 :
2.08 21 2.12 10%

Frequency (GHz) Frequency offset (Hz)

Save the Configuration and Results

Save the entire workspace, including the system configuration in its current state, and
the results, to a file. If the WorkspaceFile variable already exists, you can resave the
current state to that file. To save to a new file, change the value of WorkspaceFile.

if exist('WorkspaceFile', 'var')

save (WorkspaceFile);
end
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PLL Design and Verification Using Data Sheet
Specifications

This example shows how to use Mixed-Signal Blockset™ to model a commercial off-the-
shelf integer-N phase-locked loop (PLL) with dual modulus prescaler operating around 4
GHz. You can verify the PLL performance, including phase noise.

You can use PLL models to explore and design different loop filters, simulate different
operating frequencies, determine different divider ratios, or assess the frequency
synthesizer performance once embedded in a larger system. For example, Mixed-Signal
Blockset PLL models can be helpful if you need to integrate a PLL into a System on Chip
or a System on Board.

For this example, use the data sheet of Skyworks SKY73134-11. This is a wideband PLL
Frequency Synthesizer operating between 350 MHz and 6.2 GHz.

Build VCO Model

Open the model VCO_model, which has VCO and VCO Testbench blocks from Mixed-
Signal Blockset connected together.

model = 'VCO model’;
open_system(model);

~

h

1-16

VGO fo voo veirl | #™_~ | wooout

Testbench l\_ _/:

¥

from veo

VCO @ 4GHz

Copyright 2019 The MathWoarks, Inc

WCO Testbench


https://store.skyworksinc.com/datasheets/skyworks/SKY73134_11.pdf

PLL Design and Verification Using Data Sheet Specifications

Inspect the data sheet to identify the characteristics of the voltage controlled oscillator
(VCO). VCO is the main component contributing to the phase noise of the PLL. Table 6 of
the data sheet lists the typical VCO sensitivity (Kvco) as 20 MHz/V. Set the Voltage
Sensitivity of the VCO block to 20e6 Hz/V. The data sheet does not provide the free
running frequency (Fo) of the VCO, so you can set it to an arbitrary value close to the
operting frequency. In this case, set Free running frequency to 3.9e9 Hz.

For this example, simulate the PLL behavior when the PLL locks around 4 GHz. Table 7 of
the data sheet lists the VCO phase noise profile as: around 4 GHz is,

¢ —105dBc/Hz at 100 kHz

*+ —131dBc/Hz at 1 MHz

* —142 dBc/Hz at 3 MHz

e —152 dBc/Hz at 10 MHz

Use the phase noise profile to add phase noise impairment to the VCO. To speed up
simulation, ignore the phase noise data points at lower frequency offsets. Simulation
takes longer to capture the phase noise profile close to the carrier.

Measure VCO Phase Noise

The testbench provides the control voltage (Vctrl) stimulus to the VCO and measures the
VCO phase noise. The output frequency (F) of the VCO is :

F=RKuveoxVetrl + Fo

Substituting the values for the output frequency, the free running frequency, and the
voltage sensitivity, the equation gives a control voltage of be 5 V.

Click on Autofill setup parameters and Autofill target metric buttons to automatically
populate the measurement parameters for both setup and target metric. The target
metric provides the anticipated phase noise profile for comparison with the simulation
results. The testbench setup properties define the signal sampling frequency and the
measurement resolution bandwidth.

To speed up simulation time, reduce Sampling frequency to four times the lock
frequency, 4*4 GHz, and reduce No. of spectral averages to 4.

Run the simulation. Verify that the VCO model reproduces the phase noise profile
specified in the target metric.
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VCO
Testbench
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You can now proceed with modeling the complete PLL system and verify its phase noise
performance.

Build PLL Model

From the Features section of the data sheet, see that this PLL is of type integer-N and it
uses a dual modulus prescaler. The data sheet also provides the settings for the prescaler.
Hence, use the Integer-N PLL with Dual Modulus Prescaler from Mixed-Signal
Blockset.

bdclose(model);

model = 'PLL model’;
open_system(model);

1-19
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Open the mask of the PLL block and provide the specs for each of the subsystems:

Phase Frequency Detector — For the phase frequency detector (PFD), the data
sheet does not provide any detail. Leave the deadband compensation to its default
value.

Charge Pump — For the charge pump, the data sheet provides the typical value for
the current of 2.7 mA (data sheet, Table 5). Specify the same value in the PLL model.

VCO — For the VCO, use the same specifications used in the Build VCO Model
section. The sensitivity is equal to 20 MHz/V. Specify a free running frequency that is
close to the final locking frequency, for example 4.18 GHz. Include phase noise with
the same noise profile that you just simulated.

Divider — For the PLL to lock at 4.2 GHz when using a reference oscillator operating
at 1.6 MHz (data sheet, Figure 17), the divider ratio is equal to:
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4. 2e9
1. Geb

= 26225

To achieve the effective divider ratio of 2625, set the Prescaler divider value to 16,
Swallow counter value to 17, and Program counter value to 163.

* Loop Filter — The data sheet provides the recommended loop filter component values
in Figure 22. Manually input these values to implement the filter. Set Loop filter type
to 3rd order passive. Also set the loop filter component values:

Cl =100e-12F
C2=2.2e-9F
C3=100e-12F
R2 = 10e3 1}
R3=2.2e311

Verify the closed and open loop performance of the PLL with this implementation of the
loop filter. The resulting phase margin is 55 degrees. The phase margin along with the
pole zero locations confirm the stability of the PLL.
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Use this setup to design different loop filters and verify your design. For example, use this
PLL over a different operating frequency.

Finally, to verify the PLL locking behavior in the time domain, probe and plot the output
signal of the loop filter.

Measure PLL Performance
Connect the PLL to a Mixed-Signal Blockset PLL Testbench to validate its performance.

The testbench defines the stimuli used to test the PLL. In this case, use a square
waveform with 1.6 MHz frequency.
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Set up the testbench to measure operating frequency, lock time, and phase noise. The
data sheet specifies a 1 ms lock time with 1 ppm frequency error, that is to say 4.2 kHz
(Table 5). Provide the same error tolerance. For measuring the phase noise, use a

configuration similar to the one used for the VCO, but reduce the resolution bandwidth
for higher accuracy.

For the target metric, refer to the data sheet for both the lock time (Table 5) and the
closed loop phase noise measurements performed on the evaluation board (Figure 17).
The phase noise profile measured at 4.2 GHz is:

*+ —-98 dBc/Hz at 100 kHz

* —129 dBc/Hz at 1 MHz

* —150 dBc/Hz at 10 MHz

With this setup, run the PLL simulation and verify the performance.

1-24

PLL
Testbench
Metric Measured Target
Frequency  4.200 GHz  4.200 GHz elk gut
Lock time 1.08 ms 1.00 ms Integer N
L from pll to pll B clk in Dual
P Modulus
Phase Moise If_out
Frequency (Hz) Measured (dBc/Hz)  Target (dBc/Hz)
1e+05 -101.67 -98.00
1e+06 -129.97 -129.00 Integer N PLL with Dual Modulus Prescaler
1e+07 -157.46 -150.00
PLL Testbench

Copyright 2019 The MathWorks, Inc
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In this case, the simulation takes a few minutes. To speed up simulation time, you can
relax the settings for measuring the phase noise. For example, use a larger resolution
bandwidth or reduce the number of spectral averages.

The simulation results are in excellent agreement with the phase noise measurements
reported in the data sheet.

Reference

Skyworks SKY73134-11
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» “Effect of Metastability Impairment in Flash ADC” on page 2-2

* “Design and Evaluate Interleaved ADC” on page 2-10

* “Design and Evaluate Successive Approximation ADC Using Stateflow” on page 2-21
* “Analyzing Simple ADC with Impairments” on page 2-31

* “Subranging ADC” on page 2-40

* “Measuring Offset and Gain Errors in ADC” on page 2-52

* “Compare SAR ADC to Ideal ADC” on page 2-57
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Effect of Metastability Impairment in Flash ADC

This example shows how to customize a flash Analog to Digital Converter (ADC) by adding
the metastability probability as an impairment. You can measure the metastability
probability impairment to validate your implementation. The example also shows the
effect of metastability on the dynamic performance of the flash ADC. When the digital
output from a comparator is ambiguous (neither zero nor one), the output is defined as
metastable. The ambiguous output is expressed as NaN. This example model uses a
MATLAB function block to add the metastability impairment to a flash ADC architecture.
Another subsystem reports the metastability probability on the fly.

Customize Flash ADC

Extract the inner structure of the flash ADC to add customized impairment. Add a Flash
ADC block from the Mixed-Signal Blockset™ library to a Simulink® canvas. Look under
the mask to find the flat structure of the ADC. Copy and paste the complete structure to
another new blank canvas.

External
®—>|n1 Out1 2 )
r

start ] r 4 ready
Clock Generator .
Binary Vector
(1) Flash ADC Fault Aware . s . 1
"| Comparators "] Ones Counter -] . -
analog (s digital
Flash Comp Func Flash Output Logic Output Data Type

Delete the Clock Generator block because it is not used to provide the start conversion
clock. An external Stimuli subsystem is used for that purpose. The flash ADC now consists
of two major components:

* Flash ADC Comparators
* Fault Aware Ones Counter

Q ! ! &

start ready
p| FlashADC ol Fault Aware .

C) "] Comparators "| Ones Counter P Int outt —{(_1 )

analeg wm ] digital
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Effect of Metastability Impairment in Flash ADC

Flash ADC Comparators

An N-bit flash ADC uses 2"" e comparators in parallel. The Flash ADC Coparators
subsystem itself is based on MATLAB® code. Before the simulation starts, the
comparators calculate the individual reference voltages and store them in a vector. On
every specified edge, the input is compared to the references using MATLAB's ability to
compare vectors. This generates thermometer code similar to the real flash ADC, without
the lag from N individual comparator blocks in the model.

To create a 10- bit ADC, set Number of bits (nbits) to 10, Input Range to [-1 1], and
INL Vector to 0. Trigger type is kept at its default value Rising edge.

Fault Aware Ones Counter

The Fault Aware Ones Counter subsystem implements the impairments in the flash ADC
architecture. Real ADCs handle conversion from thermometer to binary through logic
circuits. This subsystem takes the sum-of-elements of the vector stored by the
comparators and applies that sum to a lookup table to simulate missing codes, otherwise
known as bubbles.

Set the Fault Aware Ones Counter parameters: Number of Bits (nbits) to 10, Input
Range to [-1 1], and Bubble Codes to []. Trigger type is kept at its default value
Rising edge.

Implement Metastability Probability as an Impairment to Flash ADC

To add metastability impairment, place a triggered susbsystem with a MATLAB function
block after the Flash ADC Comparators subsystem. The MATLAB function block sets
thermometer code signals to NaNs with a probability from a uniform random number
generator. The block resets the signals on the next relevant edge which is why a triggered
subsystem is used. Use this code to implement the Metastability Impairment subsystem.

function y = metastability(u, Probability)

mult = ones(size(u));

mult(rand(size(u)) < Probability(1l)) = NaN; % metastability = NaN
y =u .* mult;

end

o® o o o° o°
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?

in
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Trigger

< yF—»(3)

Probability metastability out

probability
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MATLAB Function

Provide the metastability probability that you want to implement through a constant block
connected to the Probability port.

Implement Measuring Metastability Probability

To measure metastability impairment, count the number of NaNs encountered and divide
that by the number of total comparator outputs generated during the complete
simulation. A simple Simulink implementation of metastability probability measurement
is:



Effect of Metastability Impairment in Flash ADC

Measuring metastability probability

: Count
(1} P isnan > Inc Up Cnt
ADC ouput

Counter1

Count
(2) »inc “01] Cnl—
Ready signal

Counter2

X

{1
metastability probability @

probability

|

The Inports are:
* ADC output- Receives the output digital code generated by the flash ADC.

* Ready signal- Receives the ready signal which represents the rate at which the digital
conversion is taking place. The digital code gets generated at each rising edge of the
signals received by 'Ready signal' port.

Simulation for Metastability Measurement

The model below combines the customized flash ADC with its output connected to the
metastability probability measurement system. In the model, you have a 10-bit flash ADC
with metastability probability of 1e-6 added. The Stimuli subsystem generates an analog
signal of 100 Hz and a start conversion clock with a frequency of 100 MHz. The ADC
operates at the rate defined by the start conversion clock frequency. A dashboard scope
provides the behavior of the probability number over time. A display block shows the
current probability being measured by the subsystem. You must run the simulation for a
long enough period to see the probability number settled at the desired value, in this case
le-6.

NBits=10;

modell="'flashAdc metastability.slx"';
open_system(modell);
open_system([bdroot, '/Scope']);
sim(modell);
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Flash ADC with metastability impairment
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oo
00
Signal
Generator
ik
Sampling Clock Source
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Effect of Metastability Impairment in Flash ADC

i

o]
X

File Tools View Simulation Help ¥

- 0P ® Z-qQ-[C-FH-

metastability probability

I i P

h e

Ready Sample based T=0.100

Effect of Metastability on Dynamic Performance of ADC

You can observe the effect of metastability on the dynamic performance of ADCs. The
model shows two setup of flash ADC systems: one with metastability and the other
without. A postprocessing block that takes in the impaired digital output and converts the
NaNs to zeros. This is because the digital output with NaNs cannot be recognized by a
spectrum analyzer as valid signal for spectral analysis. Attach an ADC AC measurement
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block to observe various performance metrics like SNR, ENOB, noise floor and so on. The
simulation results show the AC analysis causes a significant drop in performance for ADC
with metastability, as shown by the lower ENOB and higher noise floor.

model2="flashAdc metastability Effect.slx';
open_system(model2);
sim(model2);

ADC
- AC Measurement

10

WETSIOn delag: ﬂ[’Bm s

Com
post-processing block ready  SINAD: 25.9.
SFDR: 62.21 dB
SNR: 25 63 dB

ENOB: 4.01

Noise flaor: 5.05 dBm
Flash ADC with metastability impairment
10
I ! b AT
Flash ADG |102} Metastabiity [1%2] Fault Aware = L5 ot 2 sampler
“anaiog sgnal Comparators Impairment Ones Counter — ADC putput
Flash Comp Func  Metastabilty  Flash QuiputLogic  Output Data Type:
Impairment
Stimuli
oooo without metastabiliy
oo
Signal
Generator
lerl
T SamPIEr g vany to Decmal1
start conversion clock
Sampling Clock Source
Flash ADC without metastability impairment
l ‘start conversion clock. l
Binary Vecior
Fiash ADC  [1023 Fault Aware i () ADC
“anatog signal Comparators 702%| Ones Counter L Imc tpat fi AC Measurement
Cany delay: 0.00

Flash Comp Funcl Flash Oulpul Logict R R 'SINAD: 60,06 dB

SFDR: 85.04 0B

SNR: 61.07 dB8
Noise floor: -32.01 dBm




Effect of Metastability Impairment in Flash ADC
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Design and Evaluate Interleaved ADC

This interleaved ADC model highlights some of the typical impairments introduced by
data converters and their effects on a larger system.

Model

In this example, interleave two simple ADCs based on the model ADC with impairments to
create the equivalent of one ADC operating at 2X the individual ADC sampling rate. Use a
two-tone test signal at 200 MHz and 220 MHz as the input to verify the distortion
introduced by the ADC operation.

model = 'interleaved adc';

open_system(model)

set param([model '/ADC 1 at 1G SPS'],'jitter','off');

set param([model '/ADC 1 at 1G SPS'], 'nonlinearity','off');
set param([model '/ADC 1 at 1G SPS'], 'quantization','off');

set param([model '/ADC 2 at 1G SPS'],'jitter','off');

set param([model '/ADC 2 at 1G SPS'], 'nonlinearity','off');
set param([model '/ADC 2 at 1G SPS'], 'quantization','off');
set param([model '/Offset Delay'l], 'DelayTime','.5/Fs adc');
set param([model '/Two Tone Sine Wave'l], 'Amplitude’,'.5"');
set param([model, '/Input Switch'], 'sw', '1');

sim(model)
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Design and Evaluate Interleaved ADC

. . p] digital ADE
Two Interleaved ADCs with Impairments

AC Measurement

, Conversion delay: 0.00 5
P rza SINAD: 0.00 dB
Copyright 2011-2019 The MathWorks, Inc J-|_|-|_ Y
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Input Switch
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Measurement
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To bypass the impairments, use appropriate switch positions inside the ADC blocks. The
ADC behavior is purely ideal. The two ADCs in the top-level model are identical with the
exception that the noise generators in each ADC have different seeds to make the noise
uncorrelated.

Each ADC operates at 1 GHz rate, set by the MATLAB® variable Fs_adc defined in the
initialization callback of this model. The operating rate of the ADCs is indicated by the
green signals and blocks in the diagram. The input signal of the second ADC is delayed by
an amount equal to half a period of the ADC sampling frequency.

Timing Imperfection

The precision of the timing between the individual ADCs is critical. To see the effect of a
timing mismatch, open the Offset Delay block and simply add 10 ps to the delay value.

set param([model '/Offset Delay'l, 'DelayTime','.5/Fs adc + 10e-12");



Design and Evaluate Interleaved ADC

The 10 ps error causes a significant degradation of the ADC performance, even though
both ADCs are perfectly ideal. To compensate for the performance degradation, some
form of drift compensation is necessary. For more information, see SP Devices:
spdevices.com/index.php/interleaving

sim(model)
[ o || = &3
File Tools View Simulation Help u
B- Qb ®| - a- 53| [X& L&

¥ ¥ Distortion Measurements ax

NSl it ermodulation s

¥ Harmonics

TYTYTYY

m
|
i)
=
1]
= |
=
w
k]
'E
=
=
=
1]

Tol: Inf dBWY

Ready REWW=1 46 MHz |Zample rate=2 GHz |T=3e-05

Effect of Aperture Jitter

Remove the fixed offset of 10 ps and enable the aperture jitter impairment in each of the
ADC subsystems.

set param([model '/Offset Delay'l], 'DelayTime','.5/Fs adc');

set param([model '/ADC 1 at 1G SPS'],'jitter','on');
set param([model '/ADC 2 at 1G SPS'],'jitter','on');
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The noise around the two-tone test signal at 200 MHz is expected, as a direct result of the
ADC jitter. The additional noise around 800 MHz is the result of interleaving two
uncorrelated noise sources.

sim(model)
[ = =] £3
File Tools View Simulation Help ¥
B- @b @ - aQ-|C @R L&

* ¥ Distortion Measurements ax

NSO ntermodulation s

¥ Harmonics

B Lahel frequent

F
F2

o
=
b
=
-
i)
=
o
=
=
7]
i)
=
=
=
=)
i
=

2F1-F2 ;
JF2-F1 0240234
TOI  8.36 dBw

Ready REW=1 46 MHz |Zample rate=2 GHz |T=3e-05

Effect of Nonlinearity

Remove the jitter impairment and activate the nonlinearity impairment in both ADCs.

set param([model '/ADC 1 at 1G SPS'],'jitter','off');
set param([model '/ADC 2 at 1G SPS'],'jitter','off');
set param([model '/ADC 1 at 1G SPS'], 'nonlinearity','on');
set param([model '/ADC 2 at 1G SPS'], 'nonlinearity','on');

The spectrum now shows 3rd order IMD products around two tones and harmonically
related spurs around the 600 MHz region.
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sim(model)
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Even though the ADC nonlinear effects are identical and create exactly the same odd
order components, there is actually some cancellation of terms. If just one nonlinearity is
enabled, the resulting spectrum is worse than when both ADCs are nonlinear.

set param([model '/ADC 2 at 1G SPS'], 'nonlinearity','off');
sim(model)
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Effect of Quantization and Saturation

Remove the linearity impairment and activate the quantization. The quantizer is set to 9
bits, and the signal level is close to the full scale of +/ -1, which can be seen in the input

Time Scope.

set param([model '/ADC 1 at 1G SPS'], 'nonlinearity','off');
set param([model '/ADC 2 at 1G SPS'], 'nonlinearity','off');
set param([model '/ADC 1 at 1G SPS'], 'quantization','on');
set param([model '/ADC 2 at 1G SPS'], 'quantization','on');

The spectrum shows the noise floor increasing as an effect of quantization.

sim(model)
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Multiply the two tone test signal by a factor of 1.2. The increased amplitude saturates
each ADC, producing a clipped waveform and a dirty spectrum.

set param([model '/Two Tone Sine Wave'l], 'Amplitude','.5*1.2");
sim(model)
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ENOB, SFDR, and Other Single Tone Measurements

ADCs are often characterized by their Effective Number of Bits (ENoB), Spurrious-Free
Dynamic Range (SFDR), and other similar measurements.

These quantities are derived from a single tone test. To change the ADC's input from the
Two Tone Sine Wave source to the Single Tone Sine Wave source and back, double click
on the Input Switch. This test uses a single sine wave with a frequency of 200 MHz.

set param([model, '/Input Switch'], 'sw', '0');

The ADC AC Measurement block from the Mixed-Signal Blockset™ measures conversion
delay, SINAD (the ratio of signal to noise and distortion), SFDR, SNR (Signal to Noise
Ratio), ENOB and the ADC's output noise floor.

set param([model, '/ADC AC Measurement'], 'Commented', 'off');



Design and Evaluate Interleaved ADC

This block requires a rising edge on its start and ready ports for every conversion that the
ADC makes. In this model, these are provided by a 4 GHz pulse generator. To use the ADC
AC Measurement block in this model, uncomment the block by right clicking on it and
selecting "Uncomment" from the menu. The expected ENOB from a dynamic range of 2
and a least significant bit value (quantization interval) of 2" -8 is 9 bits.

sim(model);
disp(interleaved adc output)

SNR: '316.5751"'
SFDR: '58.7451"
SINAD: '58.7451'

ENOB: '9.466'
NoiseFloor: '-504.6523"
MaxDelay: '0'
MeanDelay: '0'
MinDelay: '0O'
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Design and Evaluate Successive Approximation ADC Using Stateflow

Design and Evaluate Successive Approximation ADC
Using Stateflow

This Successive Approximation Register (SAR) ADC model demonstrates a 12 bit
converter with a circuit-level DAC model.

Successive Approximation ADCs typically have 12 to 16 bit resolution, and their sampling
rates range from 10 kSamples/sec to 10 MSamples/sec. They tend to cost less and draw
less power than subranging ADCs.

Model

Open the system MSADCSuccessiveApproximation.

model = 'MSADCSuccessiveApproximation';
open_system(model)

ADC Internal Clock

Using a Circuit Level DAC Model

Copyright 2011-21

01% The MathWorks, Inc

12 Bit Successive Approximation Analog to Digital Converter

SARADC
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Set the switches to their default positions, selecting the two-tone source and the ideal
DAC model.

set param([model '/Source'],'sw','1l");
set param([model '/DAC'],'sw','0");

The top-level model consists ofa testbench and the device under test. The testbench
includes the test signal generators and the time domain scopes and spectrum analyzer for
measurement purposes. The device under test, highlighted in blue in the model, contains
a Track and Hold:, a Comparator, control logic, and charge scaled DAC.

The test signal is either a two-tone sine wave or a constant DC level input. This test signal
is sampled and held at the ADC's output word rate of 10 MHz. The output of the sampler
serves as one input to a comparator. The second comparator input is the DAC output
which is an incrementally stepped reference level. If the output of the sampler is greater
than or equal to the DAC output, then the comparator outputs a logical 1. When this
happens, the corresponding bit of the output is set to logical 1. Otherwise, the
comparator outputs a logical 0 which does not increment the ADC output word. This
single comparator is only place in the successive approximation converter where analog
is converted to digital.

sim(model);



Design and Evaluate Successive Approximation ADC Using Stateflow

F 1

File

dB=1Vrms=Full Scale} (dB
"]

i
(P

db |

Tools  View Simulation Help o

® b =- Q- BB XE & L

‘| || L} |I || II ” |I || I| |I |r'| || [ II || ho || ||
1 2 25

q 1 5 F A5 =

|
A
|| |I| || A II ‘

Frequency (MHZ)
REWY=293 kHz Sample rate=10hiHz |T=0.00011

Define the number of bits ( NBits ) and ADC conversion rate ( Fs ) in the MATLAB®
workspace. The ADC operating clock rate is determined from Nbits and Fs .

Nbits = 12;
Fs = 1e7;
ADC clock = Fs*(Nbits+2);

Successive Approximation Control Logic

This model uses Stateflow to model the successive approximation control logic. The state-
machine serves as a sequencer that starts by outputting a count corresponding to
midscale which in this case is 0 volts. The state-machine then performs a binary search of
one bit position at a time to find the count corresponding to the closest approximation to
the sampled input signal within 12 bits of resolution.

open_system([model '/Succesive Approximation Logic'], 'force")
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On a particular bit, if the comparator outputs a 1, then that bit is set. Otherwise that bit
position is cleared. Because there are 12 bits, it takes 12 clock cycles at the bit rate clock
to complete the conversion for a given input sample.

In this model, the bit rate clock denoted by block labeled ADC Internal Clock runs at 140
MHz. This clock is 14 times faster than the sample rate clock denoted by the block
labeled Conversion Clock in the upper left corner of the model. After the control logic
sequences from bit 11 down to bit 0 the end-of-conversion (EOC) line goes high, telling
the DAC circuitry to reset.

DAC Circuit-Level Implementation

The circuit-level DAC uses a multi-stage charge-scaled array of capacitors in a split-array
format. This architecture provides several advantages including reduced area or parts
count, a built-in sample and hold, low power dissipation, and a relatively small range of
capacitance values as would be required without a split-array.
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There are two versions of a digital to analog converter (DAC) in this model, one at the
circuit-level and the second representing ideal DAC behavior. The ideal DAC block takes
the input count and multiplies it by

V. [ 22 [ Volts
D Nuins 212 Count
to generate the output comparison voltage [1].

Set the switch to enable the circuit-level DAC model. Run the model.

set param([model '/DAC'],'sw','1");
sim(model);
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This particular charge-scaled array uses Neaps = 3 binary-weighted capacitors per stage

with a total of i = 4 stages providing a total of Neaps # K = 12 pits of DAC resolution.
The binary-weighted capacitors per stage have a value of 1, 2", and 4. The larger the
capacitance corresponds to a higher bit position within a particular stage. For example,
setting the low side of the 4C" capacitor high has 4 times the output voltage impact
relative to setting the low side of the 1{' capacitor high.

If you change the value of the variable Nbits, the physical number of bits of the converter,
you need to modify the circuit level implementation of the DAC. The ideal DAC
implementation and the control logic are parametrized with respect to the number of bits.

open_system([model '/Circuit Level 12 Bit DAC'], 'force")

12 bit 4 Stage Split Array Charge Scaling 2's Complement DAC
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Control Logic

Each stage is separated by a scaling capacitor with value *C The scaling capacitor serves
the purpose of attenuating the output voltage of each stage's output voltage. The further
the stage is from the DAC output node, the more it is attenuated. The attenuation is 8x

per scaling capacitor which corresponds to 2™«

The three MSBs are closest to the output, bits 0, 1, and 2 while there LSBs, bits 10, 11,
and 12 are furthest away. At any given time, the DAC is in one of two modes. It is either
generating an output voltage based on a particular input count or it is being reset when
the EOC line goes high. When EOC goes high, the low side of each capacitor in the DAC is
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switched to ground rather than data, thus draining the capacitors of charge in
preparation for the next approximation. This effectively drains the capacitive network of
charge preparing it for the next input sample.

Measurement Testbench

The ADC Testbench block from the Mixed-Signal Blockset™ can provide a performance
analysis of the ADC.

In DC mode, the ADC Testbench tests the linearity of the ADC. The test result is used to
generate offset and gain error measurements which are displayed on the block mask. The
full test results are available for export or visualization via the buttons on the ADC
Testbench block mask.

bdclose(model);

model = 'MSADCSAR DC';
open_system(model);
sim(model);

2-27



2 ADC Featured Examples

[

Input
Track and Hold

12 Bit Successive Approximation Analog to Digital Converter
Using a Circuit Level DAC Model

Copyright 2011-2019 The Math'Works, Inc

2-28

-—CI_’
| o= [
Dout

Comparator

Succesive Approximation Logic

To DAC

DAC Data p

Analog Resat -

o adc analog ADC from adc digital u+2*{Nbits - 1)
DC Testbench
Make Positive
Metrics Measured Target
Ofiset eror|L5B) 0.52 0.00
1o adc start Gain ermon(LSB) 044 1.00  from adc ready [
| ADC_Result
i ADC Internal Clock
140 MHz
/ 3 b}
-— ADC_out —
z »| Start
} EOC
¥ L D .
nirol

Wref

Circuit Level 12 Bit DAC

o
Data p
DAC Anaing Resat ot

Wref

Ideal DAC

Wref



Design and Evaluate Successive Approximation ADC Using Stateflow

5 4000 T T T T —
=t =TT
£ L
e i Observed
I e — — — |deal
=2 .
a2 . . . . . Best-Fit
=1 0.5 o 0.5 1
Analog Input
Endpoint Monlinearity By Code

m

%04

E

L 021 |—#— Endpoint INL

E ——=— Endpoint DML

0 500 1000 1500 2000 2500 3000 3500 4000
Code

Best Fit Nonlinearity By Code

=
-p d

Yalue in LSEB
=)
fua

0 500 1000 1500 2000 2500 3000 3500 4000
Code

The AC mode of the ADC Testbench provides insight into the frequency performance of
the ADC, including measurements like the ENoB (Effective Number of Bits), the maximum
measured conversion delay, and the noise floor of the converter. These measurements are

displayed on the block icon after simulation and are available for export via a button on
the block mask.

model = 'MSADCSAR AC';

open_system(model);
set param([model '/DAC'],'sw','1l");
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Analyzing Simple ADC with Impairments

Analyzing Simple ADC with Impairments

This example shows how to implement a basic ADC using a Zero-Order Hold block as a
sampler. This simple ADC highlights some of the typical impairments introduced in an
analog-to-digital converters such as aperture jitter, nonlinearity, quantization, and
saturation. This example shows how to measure the effects of such impairments using a
Spectrum Analyzer block and the ADC AC Measurement block from the Mixed-Signal
Blockset™. To better approximate real-world performance, you can individually enable

the impairments in the model.

model = 'MSADCImpairments';
open_system(model)

Jitter

Shape the jitter
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e
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ADC With Impairments
Copyright 2011-2019 The MathWorks, Inc

To observe the behavior of an ideal ADC, bypass the impairments using the switches. Set
the Sine Wave source to generate two tones as an input signal.

set param([model '/Aperture Jitter'],'sw','1l');

set param([model '/Non Linearity'],'sw','0');

set param([model '/Quantization and Saturation'],'sw','0");

set param([model '/Sine Wave'l, 'Frequency', '2*pi*[47 53]*1le6');

Simulate the model and observe the expected clean output spectrum of the ADC.

sim(model);

### Building the Accelerator target for model: MSADCImpairments
### Successfully built the Accelerator target for model: MSADCImpairments
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Effect of Aperture Jitter

Set the first switch to the down position. The Variable Delay block delays the signal
sample-by-sample by the amount on its td input. The Noise Source block generates a
uniform random variable, which is low-pass filtered by the Shape the jitter noise spectrum
block before it arrives at the td input to the Variable Delay. Use a shaped uniform noise
distribution to represent the jitter. Notice that in this model, the clock of the ADC is
specified in the ideal zero-order hold block, and it is equal to 1/Fs, where Fs is a
MATLAB® variable defined in the model initialization callback and equal to 1.024 GHz.

set param([model '/Aperture Jitter'],'sw','0"');

As expected, the spectrum degrades because of the presence of the jitter.

sim(model);
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Effect of Nonlinearity

Set the second switch to the up position. This enables the ADC nonlinearity. A scaled
hyperbolic tangent function provides nonlinearity. Its scale factor, alpha, determines the
amount of nonlinearity the tanh applies to the signal. By default, alpha is ©0.01.

set param([model '/Non Linearity'],'sw','1l");

The spectrum degrades because of the nonlinearity as higher order harmonics get
generated.

sim(model);
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Effect of Quantization and Saturation
Set the third switch to the up position enabling the ADC quantization and hard saturation.
set param([model '/Quantization and Saturation'], 'sw','1l');

The spectrum degrades because of the quantization effects. The noise floor raises as seen
in the spectrum.

sim(model);
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ADC AC Measurements

Use the ADC AC Measurement block in the Mixed-Signal Blockset™ to measure the noise
performance of the ADC and compute the effective number of bits (ENOB).

Use single sinusoidal tone as input to the ADC to measure other metrics.

bdclose(model);
model = 'MSADCImpairments AC';
open_system(model);
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ADC With Impairments
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Ftest = 33/round(2*pi*278)*Fs;
set param([model '/Sine Wave'l, 'Frequency', '2*pi*Ftest');

scopecfg = get param([model '/Spectrum Scope'], 'ScopeConfiguration');
scopecfg.DistortionMeasurements.Algorithm = 'Harmonic';
scopecfg.FFTLength = '512';

scopecfg.WindowLength = '512';

sim(model);
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The Aperture Jitter Measurement block from Mixed-Signal Blockset™ measures the
average jitter introduced on the signal to be approximately equal to 50 ps.

Additionally, use the spectrum analyzer to measure:

* Output Third Order Intercept Point (OIP3)
* Signal to Noise Ratio (SNR)
» Total Harmonic Distortion (THD)
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Increase the factor alpha to increase the nonlinearity of the ADC and make the effects of
nonlinearity more evident on top of the noise floor. This is just for demonstration
purposes.

alpha = 0.8;
Use a two tone test signal as input to the ADC for the intermodulation measurements.
set param([model '/Sine Wave'l, 'Frequency', '2*pi*[50e6 75e6]');

To enable distortion measurements in the spectrum analyzer, click on Distortion
Measurement as in the figure below and select Intermodulation as Distortion type.

scopecfg.DistortionMeasurements.Algorithm = 'Intermodulation’;
scopecfg.FFTLength = '4096"';
scopecfg.WindowLength = '4096";

sim(model);
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The scope allows for the measurement of the third order products adjacent to the input

signals, and determines the output referred third order intercept point.
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Subranging ADC

2-40

This example shows how to model a 6-bit Subranging ADC with pipelining and an error
correcting second stage.

Subranging ADCs are typically faster than sigma delta and successive approximation
ADCs but provide less resolution. Typical sample rates are in the 10M sample/sec range,
and typical resolution is 8 to 16 bits. Additional stages and/or bits per stage yield higher
resolutions.

Model

The subranging ADC is a two stage data converter. The first stage converter is a 3-bit
Flash ADC block. It drives a 3-bit ideal DAC, which in turn drives the second stage. The
second stage converter is 4-bit flash ADC. The extra bit corrects the errors in the first
ADC and improves conversion accuracy. The sampling rate of the ADC is 100 MHz, and is
defined in the model initialization callback by MATLAB® variable Fs.

The model is based on the following Analog Devices tutorial: ADC Architectures V:
Pipelined Subranging ADCs.

The first ADC serves as a coarse 3 bit converter. The quantization error due to the first
ADC is itself quantized by the second ADC. To quantize this error, a 3 bit DAC converts
the coarse ADC output to an analog signal which is subtracted against the original analog
input. The difference is the residue signal. The residue signal is amplified and converted
back to a digital signal by the second ADC. The 3 bit ADC output (MSBs) and the 4 bit
ADC output (LSBs) are concatenated to form an overall 6 bit unsigned ADC output.

model = 'subranging adc';
load_system(model);

set param(model, 'StopTime', '0.001');

set param([model '/ADC AC Measurement'], 'Commented', 'off');

set param([model '/ADC DC Measurement'], 'Commented', 'on');

set param([model '/Subsystem/Buffer'], 'N', '0.001 * 2 * Fs')

set param([model '/Time Scope'l, 'TimeSpan', 'le-6');

set param([model '/Time Scope'l, 'TimeSpanOverrunAction', 'Scroll');

open_system(model);


http://www.analog.com/static/imported-files/tutorials/MT-024.pdf
http://www.analog.com/static/imported-files/tutorials/MT-024.pdf

Subranging ADC

Subranging ADC Example

Capyright 2019 The MathWorks, Inc. Allrights reserved.
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Dynamic Testing

This model uses one of two test sources. Use a sine wave for dynamic testing, e.g. ENoB,
SNR, and SFDR. Use a ramp signal for static testing, e.g. missing codes and nonlinearity
quantifiers.

To determine SNR, ENOB and other dynamic characteristics of the subranging ADC, use
the ADC AC Measurement block from the Mixed-Signal Blockset™ . Select he correct
switch position to use the Sine Wave as input source.

set param([model '/Source Select'],'sw','1l");

set _param([model '/Sine Wave'], 'Frequency', '2 * pi * 10e6');
set param([model '/Sine Wave'], 'Amplitude', '0.5"');

set param([model '/Sine Wave'], 'Bias', '0.5');

open_system([model '/Time Scope'l);
open_system([model '/Spectrum Analyzer']);
sim(model);
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Add another sine wave to the input to test intermodulation distortion. Observe and
measure the results using the spectrum analyzer.

set param([model '/Sine Wave'l],
set param([model '/Sine Wave'l],
set param([model '/Sine Wave'l],

sim(model);

'Frequency', '2 * pi * [10, 12] * le6');
"Amplitude', '0.25");
'Bias', '0.25');

2-43



2 ADC Featured Examples

4.
File
@ ~

Reacy

Tools  Wiew

CRON

Simulation  Help

2-a-|E-|F&-

Frame hased Offset=999 T=0.001

2-44




Subranging ADC

4 = [=] EL

File Toals View Simulation Help

- @r@® - a- 053 LN
* ¥ Spectrum Settings
¥ Main options

Input domain:

M

m“' ‘\ M ”M

I

\"J

\| fu"

||\|\| ‘H”M”

=

Reacy RBEVW=292 97 kHz Sample rate=200MHz | T=0.001

Missing Code Analysis

This example uses a histogram block to plot the frequency of occurrence of each ADC
output code. Uncomment the histogram by right-clicking on it and selecting Uncomment
from the menu. Use the Ramp block as the input source by setting the input switch to the
proper position.

Because there is no need to collect multiple periodograms for DC measurements, change

the simulation time to 1.28e-5 s, then comment out the ADC AC Measurement block and
the Spectrum Analyzer. To collect quantitative data to go with the histogram, uncomment

the ADC DC Measurement block.

set param([model '/Source Select'],'sw','0"');
set param(model, 'StopTime', '1.28e-5');
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set param([model '/Subsystem/Buffer'], 'N', '1.28e-5 * 2 * Fs')
set param([model '/ADC AC Measurement'], 'Commented', 'on');

set param([model '/ADC DC Measurement'], 'Commented', 'off');

w = warning('off', 'msblks:msblksMessages:ADCDataTruncated"');

set param([model '/Time Scope'l], 'TimeSpan', '1.28e-5');

set param([model '/Time Scope'l, 'TimeSpanOverrunAction', 'Wrap');

—_——

close system([model '/Spectrum Analyzer'l]l);
open_system([model '/ADC Output Histogram']);
sim(model);
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You can observe how the second stage corrects errors from the first by adding Offset
Error and Gain Error in the impairments tab of the MSB ADC. Any fraction of an LSB
introduced as a form of gain or offset error results in an imbalance or missing code in the
ADC output histogram. Anything other than a flat histogram with a sawtooth input
signifies some amount of non-ideal ADC behavior in the form of integral non-linearity,
differential non-linearity, or missing codes.

Errors of up to 1 LSB in the MSB ADC are corrected by the extra bit of the LSB ADC.
Larger errors influence the output.

set param([model '/MSB ADC'], 'OffsetError '0 5');
set param([model '/MSB ADC'], 'GainError' .3');
sim(model);
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View the results of the ADC DC Measurement block by clicking the Plot measurement

results button in the block mask.
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ADC Testbench

Verify that the results of your tests are due only to properties of the ADC rather than of
the input signals or output processing with the ADC Testbench. Connect the inputs and
outputs of the converter to the inputs and outputs of the ADC Testbench and run the
simulation. The results of the test will show up on the block mask once you run the

simulation.

model = 'subranging adc testbench';

open_system(model);
warning(w.state,
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Subranging ADC Testbench Example

Capyright 2019 The MathWorks, Inc. All rights reserved.
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Measuring Offset and Gain Errors in ADC

2-52

This example shows how offset error and gain error are calculated and how each affects
the transfer curve of an ADC. Offset error and gain error characterize part of the linearity
error in an ADC.

Offset error is the difference between the center of the least significant code and the

center of the same code on an ideal ADC with the same number of bits. Offset error is
usually reported in units of the least significant bit (LSB) of the converter. One LSB is
equivalent to the converter's quantization interval.

Gain error in LSB is the difference between the center of the most significant code after
offset error correction and the center of the same code on an ideal ADC with the same
number of bits.

Due to the difficulty in determining the precise location of the center of a code with a non
finite boundary, these values are most commonly measured with respect to the first and
last threshold of the converter, respectively.

Units for Offset Error and Gain Error

The unit .55, which is used in this example, is defined as:

F5R

1[LSB] = N

Thus, an error in V' (volts) translates into LS 2 as follows:

i1 epl — ot ELV]
L[L.l'.l.!r.il Jﬁll-T["“]

where 'S is the full scale range of the ADC and Vs is the number of bits of the ADC.

Linearity errors are also commonly reported in normalized units with respect to the full
scale range:

f‘.1,|":-lr f scd :1 ]
FSR[V]

Iﬂu;’;’”a

Another unit sometimes used for linearity errors used is percent full scale. Percent full
scale is defined as normalized units multiplied by 100:
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Calculate Offset Error and Gain Error

Use a 3-bit ADC with dynamic range [-1 1]. Define an offset error of 1 LSB and a gain
error of 1 LSB.

Nbits 3;

Range [-1 1]; % ADC Full Scale Range
OffsetError = 1;

GainError = 1;

LSB = (max(Range) - min(Range)) / (2”Nbits - 1);

The digital codes from the ideal ADC are identical to those from the experimental ADCs.

[TCOAnalog, TCODigital] = og2tc(Nbits, Range, 0, 0); % Ideal ADC Transfer Curve
TClAnalog og2tc(Nbits, Range, OffsetError, 0); % Offset Error Only

TC2Analog og2tc(Nbits, Range, 0, GainError); % Gain Error Only

TC3Analog = og2tc(Nbits, Range, OffsetError, GainError); % Both Offset Error and Gain
plotAdcTcForExample(TCODigital, TCOAnalog, TClAnalog, TC2Analog, TC3Analog, Nbits);

. Offset Error Only ; Gain Error Only ; Offset Error and Gain Error
Offset + Gain Error
6 6 6
51 5 51
@ @ Gain E @
B4t B4t ain Error B4t
[S] [S] O
= = £
= = =)
a3 a3 a3
ol Offset Error 7 ol Offset Error
1r 1 1F
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Offset Error Gain Error Both
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The sum of offset error and gain error is known as full-scale error. In monopolar
converters zero error, essentially offset error defined at analog level 0, is identical to
regular offset error. In bipolar converters such as those above, offset error and zero error
are different quantities.

Use of Linearity Errors as Impairments

Compare a flash ADC with offset and gain error to one with no impairments.
model = 'OffsetGainExample’;

open_system(model);

open_system([model '/Scope'l);
sim(model);
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